Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
31 |
Tags
- Til
- 데이터분석가
- ai 새싹 부트캠프 6일차
- ASAC
- 새싹 AI데이터새싹 엔지니어 부트캠프 1일차
- 데이터관련면접
- 통계용어 정리
- X
- ㅂ.
- 데이터분석가면접준비
- 새싹 AI데이터새싹 엔지니어 부트캠프 3일차
- T
- 새싹 AI데이터새싹 엔지니어 부트캠프
- 새싹 AI데이터새싹 엔지니어 부트캠프 2일차
- 취준생
- ai 새싹 부트캠프 5일차
- ai 새싹 부트캠프 4일차
- ai 새싹 부트캠프 7일차
Archives
- Today
- Total
데이터 공부기록
INTRO-What is NumPy? 본문

INTRO-What is NumPy?
- 시간이 나거나 영어 공부를 대신해서 개발 문서를 번역하면서 업데이트 할것!
At the core of the NumPy package, is the *ndarray object. This encapsulates n-dimensional arrays of homogeneous data types, with many operations being performed in compiled code for performance. There are several important differences between NumPy arrays and the standard Python sequences:
*ndarry - n차원배열의 약자 단순히 임의 개수의 차원 가진배열
- NumPy arrays have a fixed size at creation, unlike Python lists (which can grow dynamically). Changing the size of an ndarray will create a new array and delete the original.
- The elements in a NumPy array are all required to be of the same data type, and thus will be the same size in memory. The exception: one can have arrays of (Python, including NumPy) objects, thereby allowing for arrays of different sized elements.
- NumPy arrays facilitate advanced mathematical and other types of operations on large numbers of data. Typically, such operations are executed more efficiently and with less code than is possible using Python’s built-in sequences.
- A growing plethora of scientific and mathematical Python-based packages are using NumPy arrays; though these typically support Python-sequence input, they convert such input to NumPy arrays prior to processing, and they often output NumPy arrays. In other words, in order to efficiently use much (perhaps even most) of today’s scientific/mathematical Python-based software, just knowing how to use Python’s built-in sequence types is insufficient - one also needs to know how to use NumPy arrays.
'sesac ai 과정 > NUMPY' 카테고리의 다른 글
[NUMPY] Broadcasting - 브로드 캐스팅의 원리 (0) | 2023.10.19 |
---|---|
[Yang.T]ndarrays with Specific Values - Function (0) | 2023.10.07 |
What is a Tensor? IN NUMPY (1) | 2023.10.07 |
[Yang.T]Objection and ndarrays (0) | 2023.10.06 |
0.NumPy: the absolute basics for beginners (2) | 2023.10.06 |